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Abstract

A systematic construction of Stäckel systems in separated coordinates and its relation to bi-
Hamiltonian formalism are considered. A general form of related hydrodynamic systems, integrable
by the Hamilton–Jacobi method, is derived. One-Casimir bi-Hamiltonian case is studied in details
and in this case, a systematic construction of related hydrodynamic systems in arbitrary coordinates
is presented, using the cofactor method and soliton symmetry constraints.
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1. Introduction

There is a quite well-developed theory of the passage from an integrable, infinite dimen-
sional Hamiltonian system (soliton system) to its various constrained flows which are them-
selves completely integrable Hamiltonian systems. Actually, by using the Hamilton–Jacobi
method with respect to two evolution parametersx andt, N-gap solutions andN-soliton
solutions of a given PDE can be constructed directly from solutions of related ODEs
(constrained flows)[1–5].
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In the present paper we are interested in, instead of soliton systems, the first order
quasi-linear PDEs of the form

qit =
n∑

j=1

wij (q)qjx, qi = qi(x, t), i = 1, . . . , n, (1.1)

calledhydrodynamicor dispersionlesssystems. More precisely, we consider these systems
among(1.1), whose general solutions can be obtained from the solutions of the related
integrable finite dimensional Hamiltonian systems, like in the case of soliton systems.
Such an approach was presented for the first time by Ferapontov and Fordy[7], where
authors gave general solutions of appropriate hydrodynamic systems from general solutions
of related separable finite dimensional systems. The idea is the following. Consider, for
example a completely integrable Hamiltonian system of two degrees of freedom, given by
a Hamiltonian function

H = 1
2(p

2
1 + p2

2) + V(q1, q2), (1.2)

and an additional constant of motion

F = q2p1p2 − q1p
2
2 + W(q1, q2), (1.3)

which commutes withH with respect to the canonical Poisson bracket. Note that both
functions are quadratic in momenta, which belongs to the class to be considered in this
paper. Letx be an evolution parameter of the flow generated byH andt be an evolution
parameter of the flow generated byF . The commutativity of the two flows means that we
can consider a two-dimensional surface in phase space, parameterized byx andt. On this
surface, the equations of motion forq are

qix = ∂H

∂pi

, qit = ∂F

∂pi

, i = 1,2. (1.4)

Eliminatingp1 andp2 from (1.4), we obtain a system of hydrodynamic type(1.1)

q1t = q2q2x, q2t = q2q1x − 2q1q2x. (1.5)

In this calculation,V andW play no role, so in fact the hydrodynamic system is generated
by the geodesic parts of both Hamiltonian functions. The functionsV,W for whichH andF
commute belong to the Stäckel class of parabolic coordinates and are the conserved density
and flux for the hydrodynamic system, respectively, asVt = Wx. Moreover, as there is an
infinite hierarchy of separable potentialsV,W , we have an infinite hierarchy of conserved
densities and related fluxes. Hence, solutions of Hamiltonian systems(1.2) with arbitrary
separable potentialV are simultaneous solutions of hydrodynamic system(1.5).

Remark 1. One can pass to higher order PDEs eliminating one of theqi but it is necessary
to specify a particular form ofV . The Hénon–Heiles potentialV = q3

1 + (1/2)q1q
2
2 leads to

the KdV equation forq1 [7], whilst the quartic potentialV = 16q4
1 +12q2

1q
2
2 +q4

2 generates

q1t = − 1

48

(
q1xx

q1
+ 64q2

1

)
x

,
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which is not integrable PDE (all the integrable cases of such equations are listed in canonical
form in [8]).

Here following this line we consider the problem more systematically. First, we observe
that all examples from Ferapontov and Fordy[7] belong to subclass of Stäckel systems
considered by Benenti[17], which, as was shown by Ibort et al.[15], are one-Casimir
bi-Hamiltonian systems. Hence, applying one-Casimir and developing multi-Casimir bi-
Hamiltonian formalism to quadratic in momenta separable systems, we were able to con-
struct in very systematic way related hydrodynamic systems together with their general
solutions. Actually, inSection 2we derive explicitly, in separated coordinates, the general
form of Stäckel systems on Riemann (pseudo-Riemann) manifold and the related hydro-
dynamic systems integrable by Hamilton–Jacobi method. Then, inSection 3, we connect
the considered Stäckel systems with a bi-Hamiltonian formalism generalizing one-Casimir
case onto multi-Casimir one. InSection 4we present a one-Casimir bi-Hamiltonian sys-
tems in arbitrary coordinates (not necessary canonical), which we call the cofactor Stäckel
systems, and related cofactor hydrodynamic counterparts. Then, we present a recipe for the
construction of some class of cofactor hydrodynamic systems in the Cartesian coordinate
frame. Finally, inSection 5, we use constrained flows of soliton systems for a systematic
derivation of hydrodynamic systems from the class considered.

2. From Stäckel Hamiltonians to complete integral of related
hydrodynamic systems

All examples discussed in this paper belong to the class of separable systems associated
with Stäckel matrices. Actually, in 1893 Stäckel gave the first characterization of the Rie-
mann (pseudo-Riemann) manifold(Q, g) on which the equations of geodesic motion can
be solved by separation of variables. He proved that if in a system of orthogonal coordinates
(λ, µ) there exists a nonsingular matrixϕ = (ϕlk(λk)), called aStäckel matrixsuch that the
geodesic HamiltoniansEr are of the form

Er =
n∑

i=1

(ϕ−1)irµ
2
i , (2.1)

thenEr are functionally independent, pairwise commute with respect to the canonical
Poisson bracket and the Hamilton–Jacobi equation associated toE1 is separable.

Then, Eisenhart gave a coordinate-free representation for Stäckel geodesic motion intro-
ducing special family ofKilling tensors. He proved[6] that the geodesic Hamiltonians can
be transformed into a Stäckel form(2.1) if the contravariant metric tensorG = g−1 has
(n−1) commuting independent contravariant Killing tensorsAr of a second order such that

Er =
∑
i,j

Aij
r pipj, (2.2)

admitting a common system of closed eigenformsαi

(A∗
r − virG)αi = 0, dαi = 0, i = 1, . . . , n, (2.3)
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wherevir are eigenvalues of(1,1)Killing tensorKr = Arg (K∗
r = gA∗

r ). In local coordinates
q onQ, we have

Kr =
∑
i,j

(Kr)
i
j

∂

∂qi
⊗ dqj, K∗

r =
∑
i,j

(Kr)
j
i dqi ⊗ ∂

∂qj
. (2.4)

From now on, separated canonical coordinates will be denoted by(λ, µ) and natural co-
ordinates, not necessarily canonical, by(q, p). Forn degrees of freedom, let us considern

Stäckel Hamiltonian functions in separated coordinates in the following form:

Hr =
n∑

i=1

virg
iiµ2

i + Vr(λ) = µTKrGµ + Vr(λ), r = 1, . . . , n, (2.5)

whereµ = (µ1, . . . , µn)
T, andVr(λ) are appropriate potentials separable in(λ, µ) coor-

dinates. So, we have ann-dimensional surface parameterized byn Hamiltonian “times”
t1 = x, t2, . . . , tn. In this case we have(1/2)n(n − 1) hydrodynamic systems(1.1)written
down in the form

λitk = wi
klλitl , wi

kl = vik

vil

, k > l = 1,2, . . . , n − 1, (2.6)

and the corresponding conservation laws:Vltk = Vktl . For a given evolution parametertk
and a “space” coordinatetl, there aren − 2 hydrodynamic flowsλitr = wi

klλitl , r �= k �= l

which commute with a given flow. It follows directly from the involutivity of(2.5). The
requirement thatH = H1, andHk are in involution with respect to the canonical Poisson
bracket leads to the equations

∂iv
i
k = 0 for any i = 1, . . . , n, (2.7)

∂j ln (gii ) = ∂jv
i
k

v
j

k − vik

for any i �= j, (2.8)

∂iVk − vik∂iV1 = 0 for any i = 1, . . . , n, (2.9)

where∂i := ∂/∂qi. Condition(2.7)means that our system(2.6)is linearly degenerate. Cross
differentiation of(2.8)gives

∂l

(
∂jv

i
k

v
j

k − vik

)
= ∂j

(
∂lv

i
k

vlk − vik

)
for any i �= j �= l �= i. (2.10)

This last condition is called the “semi-Hamiltonian” property[9] in the context of systems of
hydrodynamic type. In that sense we consider weakly nonlinear semi-Hamiltonian (WNSH)
hydrodynamic systems.

The solution of the system ofequations (2.7)–(2.9)is easy to derive if one realizes that
the separated coordinates(λ, µ) for a Liouville integrable system have to fulfil the Sklyanin
conditions[10]

ϕi(λi, µi;H1, . . . , Hn) = 0, i = 1, . . . , n, (2.11)
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which guarantees the solvability of an appropriate Hamilton–Jacobi equation. For the inte-
grable system(2.5), under the assumption that all functionsϕi are linear with respect to all
Hj, conditions(2.11)take the general form

fi(λi)µ
2
i + γi(λi) =

n∑
k=1

Φk
i (λi)Hk, i = 1, . . . , n, (2.12)

known as Stäckel separation conditions, wherefi, γi, Φ
k
i are arbitrary smooth functions of

its argument and the normalizationΦn
i = 1, i = 1, . . . , n is assumed. To get the explicit

form of Hk = Hk(λ, µ) one has to solve the system of linearequations (2.12). The results
are the following:

gii = (−1)i+1fi(λi)detWi1

detW
, vir = (−1)r+1 detW ir

detWi1
, (2.13)

Vr =
n∑

i=1

(−1)i+rγi(λi)
detW ir

detW
, (2.14)

where

W =




Φ1
1(λ1) Φ2

1(λ1) · · · Φn−1
1 (λ1) 1

...
...

. . .
...

...

Φ1
n(λn) Φ2

n(λn) · · · Φn−1
n (λn) 1


 , (2.15)

andW ik is the(n − 1) × (n − 1) matrix obtained fromW after we cancel itsith row and
kth column. Then the Stäckel matrixϕ is given by

ϕ =




Φ1
1(λ1)

f1(λ1)

Φ2
1(λ1)

f1(λ1)
· · · Φn−1

1 (λ1)

f1(λ1)

1

f1(λ1)
...

...
. . .

...
...

Φ1
n(λn)

fn(λn)

Φ2
n(λn)

fn(λn)
· · · Φn−1

n (λn)

fn(λn)

1

fn(λn)


 . (2.16)

Notice that forr = 2, we reconstructed the result of Ferapontov[11] for the functions
vi2.

Remark 2. One can observe that for all known separable systems, we havefi = f , γi = γ,
Φk

i = Φk, i = 1, . . . , n, so the conditions(2.12)are represented by the separation (spectral)
curve

f(λ)µ2 + γ(λ) =
n∑

k=1

Φk(λ)Hk.

Given a Hamiltonian system in canonical separated coordinates(λ, µ) we can linearize
the system through a canonical transformation(λ, µ) → (b, a) in the formbi = ∂S/∂ai,
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µi = ∂S/∂λi, whereS(λ, a) = ∑n
i=1 Si(λi, a) is an additively separated generating func-

tion, satisfying the related Hamilton–Jacobi equations

Hr

(
λ,

∂S

∂λ

)
= ar, r = 1, . . . , n. (2.17)

For the Hamiltonian functions(2.5), fulfilling the Sklyanin conditions(2.12), Si(λi, a) are
given by a system of ordinary differential equations

fi(λi)

(
dSi
dλi

)2

+ γi(λi) =
n∑

k=1

Φk
i (λi)ak, i = 1, . . . , n. (2.18)

Then, in(b, a) coordinates the flows are trivial

(aj)tr = 0, (bj)tr = δjr , (2.19)

and the implicit form of the trajectoriesλi(t1, . . . , tn) is

bj(λ, a)=
∫ λ1 Φ

n−j

1 (ξ)

ϕ1(ξ)
dξ + · · · +

∫ λn Φ
n−j
n (ξ)

ϕn(ξ)
dξ

= tj + const.j, j = 1, . . . , n, (2.20)

where

ϕi(ξ) =
(
fi(ξ)

[
n∑

k=1

Φk
i (ξ)ak − γi(ξ)

])1/2

. (2.21)

Multi-component functionsλi(t1, . . . , tn) are simultaneous solutions of all dynamics de-
fined byn Hamiltonians(2.5), as well as general solutions of all hydrodynamic systems
(2.6) [11].

Of course, we would like to distinguish our separable Stäckel system(2.5)and the related
hydrodynamic systems written down in any natural coordinates(q, p). As we know, for
one and a half century this problem has been unsolved in general. Quite recently, there
appeared two strong formalisms which allow us to construct systematically a transformation
to separated coordinates. One formalism is based on Lax representation of the system
considered[10] and the other one on a bi-Hamiltonian formalism[12–15]. In what follows
we will use some results of the second formalism.

3. Bi-Hamiltonian Stäckel systems in separable coordinates

An important fact is that the Stäckel systems(2.5)are bi-Hamiltonian on the phase space
M = T ∗Q × Rk, i.e. the cotangent bundle spanned byk additional Casimir coordinates,
where 1≤ k ≤ n. Let us assume thatM is equipped with a linear Poisson pencilΠλ =
Π1 − λΠ0 of rank 2n, i.e. a pair of Poisson operators (tensors)Πi : T ∗M → TM each
of rank 2n such that their linear combinationΠ1 − λΠ0 is again a Poisson operator for
any λ ∈ R (the operatorsΠ0 andΠ1 are then said to be compatible). Moreover, let us



M. Błaszak, W.-X. Ma / Journal of Geometry and Physics 47 (2003) 21–42 27

assume thatk CasimirsH(i)
λ , i = 1, . . . , k of the pencilΠλ are polynomials inλ of orders

n1, . . . , nk

H
(i)
λ = H

(i)
0 λni + H

(i)
1 λni−1 + · · · + H(i)

ni
, i = 1, . . . , k, (3.1)

wheren1+· · ·+nk = n. By expanding equationsΠλ(dH
(i)
λ ) = 0,i = 1, . . . , k in powers of

λ and comparing the coefficients of equal powers, we obtain the following bi-Hamiltonian
chains

Π0(dH
(i)
0 ) = 0

Π0(dH
(i)
1 ) = Π1(dH

(i)
0 )

...

Π0(dH
(i)
ni ) = Π1(dH

(i)
ni−1)

0 = Π1(dH
(i)
ni ),

(3.2)

wherei = 1, . . . , k. Notice that each chain starts with a Casimir of the first Poisson operator
and terminates with a Casimir of the second Poisson operator. As follows from(3.2), the
functionsH(i)

j are in involution with respect to both Poisson structures. If additionally all
H

(i)
j are functionally independent, then the chains define a Liouville integrable system. Let

us introduce the following Casimir coordinatesci = H
(i)
0 , i = 1, . . . , k. From the definition,

a Darboux–Nijenhuis (DN) separated coordinates(λ, µ, c) are the canonical coordinates
in which both Poisson structures take the following form:

Π0 =




0 I 0 · · · 0

−I 0 0 · · · 0

0 0
...

... 0

0 0



, Π1 =




0 Λ
∂H

(1)
1

∂µ
· · · ∂H

(k)
1

∂µ

−Λ 0 −∂H
(1)
1

∂λ
· · · −∂H

(k)
1

∂λ
∗ ∗
...

... 0

∗ ∗



,

(3.3)

whereI is ann × n unit matrix,Λ = diag(λ1, . . . , λn) and the symbol∗ denotes the
elements that make the matrix skew-symmetric.

Now, n Sklyanin conditions(2.11), with n functionsH(i)
j , i = 1, . . . , k, j = 1, . . . , ni,

are

fi(λi)µ
2
i + γ̄i(λi) =

k∑
j=1

Ψ
j
i (λi)H

(j)
λi

, i = 1, . . . , n, (3.4)

wherefi, γ̄i, Ψ
j
i are arbitrary smooth functions of its argument,H

(j)
λi

are the Casimir poly-
nomials(3.1)evaluated inλ = λi

H
(j)
λi

= cjλ
nj
i + H

(j)

1 λ
nj−1
i + · · · + H(j)

ni
, (3.5)
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and the normalizationΨk
i = 1, i = 1, . . . , n is assumed. One can immediately reconstruct

conditions(2.12), asH1 = H
(1)
1 , H2 = H

(1)
2 , . . . , Hn = H

(k)
nk , Φ1

i (λi) = λ
n1−1
i Ψ1

i (λi),

Φ2
i (λi) = λ

n1−2
i Ψ1

i (λi), . . . , Φ
n−1
i (λi) = λi, γi(λi) = γ̄i(λi) − ∑k

j=1 λ
nj
i Ψ

j
i (λi)cj and

then, from(2.13)we getH(i)
j = H

(i)
j (λ, µ, c).

The simplest case of one-Casimir is determined by the following Stäckel conditions:

fi(λi)µ
2
i + γi(λi) = cλni + H1λ

n−1
i + · · · + Hn, i = 1, . . . , n. (3.6)

Here we put for simplicityc1 = c, H(1)
k = Hk. Notice that related hydrodynamic systems,

written inλ coordinates, are completely described byvir functions(2.13)which are deter-
mined by the r.h.s. of the Stäckel conditions(2.12). Because in one-Casimir case the r.h.s.
of Eq. (3.6)is fixed, there is a unique set of functionsvik. Actually, as was found in[12],

Hr = −
n∑

i=1

∂ρr

∂λi

fi(λi)µ
2
i + γi(λi)

∆i

+ cρr(λ), r = 1, . . . , n, (3.7)

where∆i = ∏
j �=i(λi − λj), andρr(λ) are coefficients of the characteristic polynomial of

Λ

det(λI − Λ) = (λ − λ1)(λ − λ2) · · · (λ − λn) =
n∑

i=0

ρiλ
i, (3.8)

i.e. are Viète polynomials. In the notation ofEq. (2.5)it means that

gii = fi(λi)

∆i

, vir = −∂ρr

∂λi
, Vr = −

n∑
i=1

∂ρr

∂λi

γi(λi)

∆i

, (3.9)

soKr = diag(v1
r , . . . , v

n
r ), G = diag(g11, . . . , gnn) and the related Stäckel matrixϕ takes

the form

ϕ =




λn−1
1

f1(λ1)

λn−2
1

f1(λ1)
· · · λ1

f1(λ1)

1

f1(λ1)
...

...
. . .

...
...

λn−1
n

fn(λn)

λn−2
n

fn(λn)
· · · λn

fn(λn)

1

fn(λn)


 . (3.10)

An additional termcρr(λ) is related to the new Casimir coordinate and can be absorbed by
the potential. Note that the Killing tensorsKr are given by the cofactor representation

cof(λI − Λ) =
n−1∑
i=0

Kn−iλ
i, (3.11)

where cof(A) stands for the matrix of cofactors, so that cof(A)A = (detA)I. The cofactor
nature ofKr gives immediately the following relation:

Kr+1 =
r∑

k=0

ρk(λ)Λ
r−k, (3.12)
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and vice versa,Kr given by the relation(3.12)are of cofactor form(3.11). The functions
Hr (3.7) form a single bi-Hamiltonian chain(3.2), where

Π0 =




0 I 0

−I 0 0

0 0 0


 , Π1 =




0 Λ
∂H1

∂µ

−Λ 0 −∂H1

∂λ

∗ ∗ 0


 . (3.13)

Observe that both Poisson structures can be projected ontoT ∗Q

Θ0 =
(

0 I

−I 0

)
, Θ1 =

(
0 Λ

−Λ 0

)
, (3.14)

and

N = θ1θ
−1
0 =

(
Λ 0

0 Λ

)
(3.15)

is a (1,1) tensor onT ∗Q with a vanishing Nijenhuis torsion. The operatorN is just a lift
from Q to T ∗Q of a (1,1) tensorΛ

Λ =
∑
i

λi
∂

∂λi
⊗ dλi (3.16)

onQ with a vanishing Nijenhuis torsion[15]. Moreover, as

Λ∗ dλi = λi dλi, (3.17)

then

K∗
r+1 dλi =

r∑
k=0

ρk(λ)(Λ
∗)r−k dλi

=
r∑

k=0

ρk(λ)λ
r−k
i dλi = −∂ρr+1

∂λi
dλi = vir+1 dλi, (3.18)

and multiplying both sides ofEq. (3.18)by G we get

(GK∗
r − virG)dλi = 0 ⇔ (A∗

r − virG)dλi = 0, i = 1, . . . , n, (3.19)

i.e. the tensorial Eisenhart realization(2.3)of the Stäckel results. Moreover, if we define

Λ̄ := 1
2µ

TΛGµ, (3.20)

then

{Λ̄, E1}θ0 = aE1, a = µTG
∂(Tr Λ)

∂λ
. (3.21)
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Λ of such property is called conformal Killing tensor with the associated potential in the
form of TrΛ. Finally, note thatH1 andHn are related by

−ρnΠ0(dH1) = Π1(dHn), (3.22)

which is known as the quasi-bi-Hamiltonian representation and is just a result of the pro-
jection of one-Casimir Poisson pencil onto a symplectic leaf ofΠ0 [13,15].

Thus, within the class of one-Casimir Stäckel systems, i.e. cofactor Stäckel systems,
infinitely many systems from that class are related to(1/2)n(n−1) hydrodynamic systems
(2.6)governed byn Killing matricesKr (3.11)from geodesic Hamiltonians. For example:
vi1 = 1, vi2 = λi −

∑n
k=1 λk andvin = (−1)n(

∏n
k=1 λk)/λi.

There exists a sequence of generic separable potentialsV
(k)
r , k = ±1,±2, . . . , which can

be added to geodesic Hamiltonians, given by the following recursion relation
[16]:

V(k+1)
r = −V

(k)
r+1 + V(1)

r V
(k)
1 , V (1)

r = ρr, k = 1,2, . . . , (3.23)

and its inverse

V(−k−1)
r = −V

(−k)
r−1 + V(−1)

r V (−k)
n , V (−1)

r = ρr−1

ρn
, k = 1,2, . . . . (3.24)

Using the notationVλ = ∑n−1
j=0 Vn−jλ

j, the recursion formulas(3.23) and (3.24)can be
written in a compact form

V
(k+1)
λ = det(λI − Λ)V

(k)
1 − λV

(k)
λ , (3.25)

and

V
(−k−1)
λ = 1

λ

(
det(λI − Λ)

detΛ
V(−k)
n − V

(−k)
λ

)
. (3.26)

PotentialsV(k) (3.23) andV(−k) (3.24) are generated by the corresponding monomials
γi(λi) = λn+k−1

i andγi(λi) = λ−k
i from (3.6). The infinite hierarchy of conservation laws

takes the form(V (k)
r )ts = (V

(k)
s )tr , k = ±1,±2, . . . .

Now, the complete integral(2.20)of hydrodynamic systems(2.6)with vir = −(∂ρr/∂λi)

is given by∫ λ1 ξn−j

ϕ1(ξ)
dξ + · · · +

∫ λn ξ
n−j
n

ϕn(ξ)
dξ = tj + const.j, j = 1, . . . , n, (3.27)

where the functionsϕi(ξ) are arbitrary. Additionally, one can always construct a(1+ (n−
1))-dimensional hydrodynamic system with the solution of the form(3.27) involving all
independent variablestj, j = 1, . . . , n simultaneously.

Example 1. Three-field system(λ1, λ2, λ3).
In this case, we have

ρ1 = −λ1 − λ2 − λ3, ρ2 = λ1λ2 + λ1λ3 + λ2λ3, ρ3 = −λ1λ2λ3, (3.28)
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hence the following three WNSH hydrodynamic systems in Riemann invariant form are
admissible:

λ1t2 = −(λ2 + λ3)λ1t1, λ2t2 = −(λ1 + λ3)λ2t1, λ3t2 = −(λ1 + λ2)λ3t1,

(3.29)

λ1t3 = λ2λ3λ1t1, λ2t3 = λ1λ3λ2t1, λ3t3 = λ1λ2λ3t1, (3.30)

λ1t3 = − λ2λ3

λ2 + λ3
λ1t2, λ2t3 = − λ1λ3

λ1 + λ3
λ2t2, λ3t3 = − λ1λ2

λ1 + λ2
λ3t2.

(3.31)

The complete integral for all these systems is given by∫ λ1 ξ3−j

ϕ1(ξ)
dξ +

∫ λ2 ξ3−j

ϕ2(ξ)
dξ +

∫ λ3 ξ3−j

ϕ3(ξ)
dξ = tj + const.j, j = 1,2,3.

(3.32)

In each of the above cases, only a pair ofti coordinates is involved, so the third one can be put
equal to zero. Notice that the first two equations can be coupled into a(1+ 2)-dimensional
hydrodynamic system

λ1t3 = −1
2(λ

2
2 + λ2

3)λ1t1 − 1
2(λ2 + λ3)λ1t2,

λ2t3 = −1
2(λ

2
1 + λ2

3)λ2t1 − 1
2(λ1 + λ3)λ2t2,

λ3t3 = −1
2(λ

2
1 + λ2

2)λ3t1 − 1
2(λ1 + λ2)λ3t2

for which(3.32)is an integral involving simultaneously a triple of independent coordinates
ti, i = 1,2,3.

The two-Casimir case is given by the following Stäckel conditions:

fi(λi)µ
2
i + γi(λi)=Ψ1

i (c1λ
n1
i + H

(1)
1 λ

n1−1
i + · · · + H(1)

n1
) + c2λ

n2
i

+H
(2)
1 λ

n2−1
i + · · · + H(2)

n2
, (3.33)

wherei = 1, . . . , n andn1 + n2 = n. Becausevir are determined by the r.h.s. of(3.33),
involving arbitrary functionsΨ1

i , we have infinitely many sets ofvir functions and infinitely
many different WNSH hydrodynamic systems written inλ coordinates, integrable by the
Hamilton–Jacobi method. A particular example, withn1 = 1, n2 = n − 1 andΨ1

i = λni ,
can be found in[13].

As mentioned before, we are interested in constructing hydrodynamic systems and a hier-
archy of conservation laws, written down in some natural coordinates, which are integrable
by the Hamilton–Jacobi method. Then, we would like to find an appropriate transforma-
tion to Riemann invariant form(2.6) represented by separated coordinates. In the next
section, we present some results, based on the known theory of the separable one-Casimir
bi-Hamiltonian chains[19–22].
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4. Separable cofactor systems in arbitrary coordinates

As most relations presented in the previous section, although derived in separated coor-
dinates, are of tensorial form, i.e. coordinate-free form so they are valid in arbitrary coor-
dinate frame spanningQ. First, let us restrict our considerations to a class of one-Casimir
bi-Hamiltonian systems written in arbitrary canonical coordinates governed by a nonde-
generate point transformation betweenλ andq coordinates. After the transformation, one
gets the following Poisson structures

Π0 =




0 I 0

−I 0 0

0 0 0


 , Π1 =




0 L(q)
∂H1

∂p

−LT(q) F(q, p) −∂H1

∂q

∗ ∗ 0



, (4.1)

whereFij = (∂/∂qi)(Lp)j − (∂/∂qj)(p
TL)i and a Casimir of the pencilΠλ = Π1 − λΠ0

of the following form:

Hλ(q, p, c)=
n∑

i=0

Hn−i(q, p, c)λ
i

= pT cof(Iλ − L)G(q)p + V
(±k)
λ (q) + c det(λI − L), (4.2)

where separable potentials are generated by the recursions

V
(k+1)
λ (q) = det(λI − L)V

(k)
1 (q) − λV

(k)
λ (q), (4.3)

V
(−k−1)
λ (q) = 1

λ

(
det(λI − L)

detL
V(−k)
n (q) − V

(−k)
λ (q)

)
. (4.4)

The geodesic Hamiltonians are as follows:

Er(q, p) = pTAr(q)p = pTKr(q)G(q)p,

n−1∑
i=0

Kn−i(q)λ
i = cof(λI − L(q))

(4.5)

with a contravariant metric tensorG(q) and

Kr =
r∑

k=0

ρk(q)L
r−k, (4.6)

whereρr(q) are coefficients of a characteristic polynomial ofL(q). Note that cofactor
Stäckel systems are exactly those considered by Benenti et al.[15,17,18].

Then, the hydrodynamic equations inq representation take the form

qtj = KjK
−1
i qti , j > i = 1, . . . , n − 1. (4.7)

This class of hydrodynamic systems will be calledcofactor hydrodynamic systems. Observe
that to get cofactor hydrodynamic systems(4.7), we only need a(1,1) conformal Killing
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tensorL(q). Moreover, the separated coordinatesλi, i = 1, . . . , n, in which the system
(4.7) takes the WNSH form(2.6), are given by the roots of

det(λI − L) = 0. (4.8)

Unfortunately, there is no systematic method of constructingL tensors in a general case.
Nevertheless, recently some progress has been made in a special case of flat spaces and
Cartesianq coordinates.

Let us consider a class of one-Casimir bi-Hamiltonian systems on a flat spaceQ = Rn,
introduced recently in[19–21]. Here we briefly review the results which are important for
our construction. Letq = (q1, . . . , qn)

T be a set of Cartesian coordinates andA, ann × n

matrix, whose elements fulfil the following equations:

∂iAjk + ∂gAki + ∂kAij = 0, i, j, k = 1, . . . , n. (4.9)

Eq. (4.9)imply that the matrixA is a Killing tensor. An important class of solutions of these
equations have the form[21]

A = cof(G) (4.10)

with

G = αqqT + βqT + qβT + γ, (4.11)

whereα is a real constant,β = (β1, . . . , βn)
T is a column vector of constants and whereγ

is a symmetricn× n matrix. One can show that forn = 2 it is the general solution of(4.9)
[11].

Now, let

G̃ = α̃qqT + β̃qT + qβ̃T + γ̃ (4.12)

be another matrix of the form(4.11)(we assume that at least one of the matricesG andG̃ is
nonconstant), then, all matricesAi, i = 1, . . . , n, defined as coefficients in the polynomial
expansion of cof(G̃ + λG) with respect to the real parameterλ

cof(G̃ + λG) =
n−1∑
i=0

An−iλ
i (4.13)

with A1 = cof(G), An = cof(G̃), are Killing tensors.
Let us assume that over some region ofQdetG �= 0. ThenL = −G̃G−1, considered as

(1,1) tensor field onQ = Rn, has a vanishing Nijenhuis torsion, and so it can always be
diagonalized. Moreover, onT ∗Q we definen functions

Ei = pTAip, i = 1, . . . , n, (4.14)

and a tensor

Θ =
(

0 −G

G F

)
, (4.15)
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where(p1, . . . , pn)
T are momenta coordinates and ann × n matrixF is defined by

F = NpT − pNT, N = αq + β. (4.16)

Theorem 3. Assuming that over some region of Q the operator L has n functionally inde-
pendent nonzero eigenvalues:

(i) Θ is a Poisson tensor of rank2n.
(ii) Ei are functionally independent and in involution with respect toΘ.

Proof. OperatorΘ is skew-symmetric and the Jacobi identity can be proved by inspection.
Moreover detG �= 0 guarantee its maximal rank. On the other hand, the cofactor form of
geodesic Hamiltonians together with functional independence of eigenvalues ofL operator
means that we have the Eisenhart representation and hence the Stäckel ones in separated
coordinates. �

Obviously, we have Liouville integrable systems for geodetic motions, written in non-
canonical coordinates(q, p). ChoosingG = −I we get a special case of canonical repre-
sentations. Before we separate the system, let us construct related hydrodynamic systems.
Equations of motion forq coordinates are as follows:

qti = −2GAip, i = 1, . . . , n, (4.17)

hence, elimination ofp coordinates, together with the relationA1 = cof(G), leads to the
following cofactor hydrodynamic systems:

qtj = A−1
1 AjA

−1
i A1qti = GAjA

−1
i G−1qti , j > i = 1, . . . , n − 1. (4.18)

In particular caseti = t1 = x, we have

qtj = A−1
1 Ajqx = 1

detG
GAjqx, j = 2, . . . , n. (4.19)

To find separated coordinates for the geodesic Hamiltonians(4.14), we have to put them
into a bi-Hamiltonian form. It can be done on the extended phase spaceM = T ∗Q × R

with local coordinates(q, p, c). Let us introduce functionsDj(q) as coefficients in the
polynomial expansion of det(G̃ + λG)

n∑
i=0

Dn−i(q)λ
i = det(G̃ + λG) (4.20)

so thatD0 = detG andDn = detG̃.

Theorem 4. Functions

Hr = Er + c
Dr

D0
, r = 0, . . . , n, E0 = c, (4.21)
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constitute a bi-Hamiltonian chain with respect to a pair of compatible Poisson structures

Π0 =




0 −G 0

G −F 0

0 0 0


 , Π1 =




0 G̃ −2 det(G)p

−G̃ F̃ 2(Ñ + LN)c

∗ ∗ 0


 , (4.22)

which starts with the CasimirH0 = c of the first Poisson structureΠ0 and terminates with
the CasimirHn = En + c(Dn/D0) of the second Poisson structureΠ1. The last column of
Π1 is a first vector field from the hierarchy: Π0(dH1).

Having a bi-Hamiltonian chain, one can systematically construct separated coordinates
[22]. The result is given as follows.

Theorem 5. For a geodesic Hamiltonian system(4.14)and(4.15)the separated coordinates
λi(q) are the roots of the equation

det(λI − L) = 0 ⇔ det(λG + G̃) = 0, (4.23)

and related momentaµi(q, p) are given by the equations

µi(q, p) = 1

2

ΩT cof(G̃ + λi(q)G)p

ΩT cof(G̃ + λi(q)G)Ω
, i = 1, . . . , n, (4.24)

whereΩ = (Ñ + LN) andÑ = α̃q + β̃. The Poisson operators(4.22)attain the form

Π0 =




0 I 0

−I 0 0

0 0 0


 , Π1 =




0 Λ
∂H1

∂µ

−Λ 0 −∂H1

∂λ

∗ ∗ 0


 , (4.25)

while the Hamiltonians(4.21)have the form

Hr = −
n∑

k=1

∂ρr

∂λk

fk(λk)

∆k

µ2
k + cρr(λ), r = 1, . . . , n. (4.26)

The above theorem ensures us that under the transformation given by the roots of(4.23),
cofactor hydrodynamic systems(4.18) turn into the WNSH form(2.6), where(Kr)

i
j =

δijv
j
r = −(∂ρr/∂λi). To complete the picture from the point of view of Stäckel systems, let

us end this consideration with the following result.

Proposition 6. The generic separable potentials of the cofactor Stäckel system(4.21)and
(4.22)are given by the recursion formulas[21]

V
(k+1)
λ (q) = det(λG + G̃)

detG
V

(k)
1 (q) − λV

(k)
λ (q) = det(λI − L)V

(k)
1 (q) − λV

(k)
λ (q),

(4.27)
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V
(−k−1)
λ (q)= 1

λ

(
det(λG + G̃)

detG̃
V (−k)
n (q) − V

(−k)
λ (q)

)

= 1

λ

(
det(λI − L)

detL
V(−k)
n − V

(−k)
λ

)
, (4.28)

whereVλ = ∑n−1
i=0 Vn−iλ

i and the potentialVr belongs to the appropriate HamiltonianEr

(4.21).

In the canonical coordinatesG = −I, G̃ = L and we reconstruct the potentials(4.3) and
(4.4).

Example 2. A two field cofactor hydrodynamic system is defined by

G =
(

1 q1

q1 2q2

)
, G̃ =

(
q2

1 + 1 q1q2

q1q2 q2
2

)
.

We have

A1 =
(

2q2 −q1

−q1 1

)
, A2 =

(
q2

2 −q1q2

−q1q2 q2
1 + 1

)
,

and hence, form(4.19)

q1t2 = q2(q2 − q2
1)

2q2 − q2
1

q1t1 − q1(q2 − q2
1 − 1)

2q2 − q2
1

q1t1,

q2t2 = −q2(q
2
1 + 2)

2q2 − q2
1

q1t1 + q2(q
2
1 + 2)

2q2 − q2
1

q1t1.

The transformation(4.23)to the WNSH form

λ1t2 = λ2λ1t1, λ2t2 = λ1λ2t1,

is given by

q1 = −2

√−λ1λ2(λ1 + 1)(λ2 + 2)

λ1 + λ2 + λ1λ2
, q2 = −2

λ1λ2

λ1 + λ2 + λ1λ2
.

Example 3. Three-field cofactor hydrodynamic systems are defined by

G =




0 0 −1

0 −1 0

−1 0 0


 , G̃ =




2q3 q2 q1

q2 0 −1

q1 −1 0


 .
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We have

A1 =




0 0 −1

0 −1 0

−1 0 0


 , A2 =




0 1 q1

1 2q1 −q2

q1 −q2 −2q3


 ,

A3 =




−1 −q1 −q2

−q1 −q2
1 2q3 + q1q2

−q2 2q3 + q1q2 −q2
2


 ,

and hence, the following hydrodynamic systems:

q1t2 = −q1q1t1 + q2q2t1 + 2q3q3t1, q1t2 = −q1t1 − 2q1q2t1 + q2q3t1,

q1t2 = −q2q2t1 − q1q3t1, q1t3 = q2q1t1 − (q1q2 + 2q3)q2t1 + q2
2q3t1,

q1t3 = q1q1t1 + q2
1q2t1 − (q1q2 + 2q3)q3t1, q1t3 = q1t1 − q1q2t1 + q2q3t1,

q1t3 = 1

2

2q2
2 + 3q2

1q2 + 2q1q3

q3 − q1q2 − q3
1

q1t2 − 1

2

2q2q3 + 2q2
1q3 + q3

1q2

q3 − q1q2 − q3
1

q2t2

+ 1

2

4q1q2q3 + 2q3
2 + q2

3 + q2
1q

2
2

q3 − q1q2 − q3
1

q3t2, . . . .

The transformation(4.23)to the WNSH form(3.29)–(3.31)is given by

q1 = −1
2ρ1, q2 = 1

2ρ2 − 1
8ρ

2
1, q3 = −1

2ρ3 + 1
4ρ1ρ2 − 1

16ρ
3
1,

whereρi are defined by(3.26).

5. Hydrodynamic equations related to constrained flows of soliton systems

As it was mentioned inSection 1, symmetry constraints of soliton systems give us a sys-
tematic method of constructing Liouville integrable finite dimensional Hamiltonian systems
[23]. Moreover, most of the examples constructed so far, belongs to separable systems, sep-
arated either through a bi-Hamiltonian formalism[3,12]or through a spectral curve method
[1,2]. If additionally involutive constants of motion are quadratic forms of momenta, then
we can again systematically construct related hydrodynamic systems which have a complete
integral in the form(3.27).

We illustrate the approach by two examples. The first one is related to the constrained
Schrödinger spectral problem of the KdV hierarchy, where the natural coordinates are its
n eigenfunctions. Letqk be an eigenfunction of the KdV Lax operator∂2

x + u with an
eigenvalueαk

qkxx + uqk = αkqk, k = 1, . . . , n. (5.1)
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Under the symmetry constraint

ux =
n∑

i=1

(q2
i )x ⇒ u =

n∑
i=1

q2
i + c (5.2)

of the KdV equation, wherec, plays a role of the additional Casimir coordinate, we obtain
the Garnier system, well known in the classical mechanics

qkxx + qk

n∑
i=1

q2
i + cqk = αkqk, k = 1, . . . , n. (5.3)

The bi-Hamiltonian representation of(5.3), in canonical coordinates, was found in[24,25],
where the second Poisson structure is


0 A − 1

2qqT p

1
2qqT − A 1

2pqT − 1
2qpT [A − cI − (q, q)]q

∗ ∗ 0


 , (5.4)

pk = qkx, k = 1, . . . , n, A = diag(α1, . . . , αn) and(q, q) = qTq = ∑n
i=1 q

2
i . Observe that

this is again a cofactor Stäckel type system whereG = −I andG̃ = L = A − (1/2)qqT.
Geodesic motion is separable in generalized elliptic coordinatesλ1, . . . , λn, defined by the
relation

1 + 1

2

n∑
k=1

q2
k

z − αk
=
∏n

j=1(z − λj)∏n
j=1(z − αj)

, (5.5)

which are just the DN coordinates defined by the roots of det(λG+G̃) = 0[12]. The Garnier
potential is the first nontrivial one from generic potentials generated by the recursion(4.3),
all are separable in elliptic coordinates(5.5). The geodesic Hamiltonians are of the form

Hk+1 = 1

2
(p,Akp) + 1

4

k∑
j=1

[(q,Aj−1q)(p,Ak−jp) − (q,Aj−1p)(q,Ak−jp)],

wherek = 0, . . . , n− 1 and they allow us to construct related hydrodynamic systems. For
n = 3 the three cofactor hydrodynamic systems are

qt2 = A2qx, qt3 = A3qx, qt3 = A3A
−1
2 qt2, (5.6)

where

A2 =




1
2q

2
2 + 1

2q
2
3 − α2 − α3 − 1

2q1q2 − 1
2q1q3

− 1
2q1q2

1
2q

2
1 + 1

2q
2
3 − α1 − α3 − 1

2q2q3

− 1
2q1q3 − 1

2q2q3
1
2q

2
1 + 1

2q
2
2 − α1 − α2


 ,

A3 =




− 1
2α3q

2
2 − 1

2α2q
2
3 + α2α3

1
2α3q1q2

1
2α2q1q3

1
2α3q1q2 − 1

2α3q
2
1 − 1

2α1q
2
3 + α1α3

1
2α1q2q3

1
2α2q1q3

1
2α1q2q3 − 1

2α2q
2
1 − 1

2α1q
2
2 + α1α2


 .
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The system(5.6) takes a WNSH form(3.29)–(3.31)in the generalized elliptic coordinates
after the following coordinate transformation:

ρ1(λ) = −1
2(q

2
1 + q2

2 + q3
3) + α1 + α2 + α3,

ρ2(λ) = 1
2[(α2 + α3)q

2
1 + (α1 + α3)q

2
2 + (α1 + α2)q

2
3] − (α1α2 + α1α3 + α2α3),

ρ3(λ) = −1
2(α2α3q

2
1 + α1α3q

2
2 + α1α2q

2
3) + α1α2α3.

Of course just the KdV case offers us infinitely many Liouville integrable bi-Hamiltonian
systems, generated from the symmetry constraint of the KdV equation

qkxx + uqk = αkqk, k = 1, . . . , n,
δhm

δu
=

n∑
k=1

δαk

δu
+ c =

n∑
k=1

q2
k + c, (5.7)

wherehm is themth conserved functional of the KdV hierarchy. In each case, we get a
cofactor type hydrodynamic system.

Just to demonstrate a vast universality of this approach, our second example is related
to another soliton hierarchy, represented by the Jaulent–Miodek spectral problem[26] (a
special case of Antonowicz and Fordy spectral problem[27])(

qi

pi

)
x

=
(

0 1

α2
i − u1αi − u0 0

)(
qi

pi

)
, i = 1, . . . , n, (5.8)

and itsmth symmetry constraint

δhm

δu
= 1

2

(
(q,Aq) + c

(q, q)

)
. (5.9)

Here we consider the case ofm = 4 [3]

h4 = 7
128u

5
1 + 5

16u
3
1u0 − 5

2u
2
1xu1 + 3

8u
2
0u1 − 1

8u1xu0x.

By introducing the Ostrogradsky coordinates

qn+1 = u1, qn+2 = u0, p1 = δH4

δu1x
= − 5

16u1u1x − 1
8u0x,

p2 = δH4

δu0x
= −1

8
u1x,

Eqs. (5.8) and (5.9)for m = 4 are transformed into a canonical finite dimensional Hamil-
tonian system with the Hamiltonian function

H1 = 1
2(p, p) − 1

2(q,Aq) + 1
2qn+1(q,Aq) + 1

2qn+2(q, q) + cqn+1

− 8pn+1pn+2 + 10qn+1p
2
n+2 − 5

16q
3
n+1qn+2 − 3

8qn+1q
2
n+2 − 7

128q
5
n+1.

The bi-Hamiltonian (quasi-bi-Hamiltonian) representation was found in[3,28] with the
second Poisson structureΠ0 (Θ0) in the form(4.1)with L(q) matrix of the size(n + 2) ×
(n + 2)
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L =




A −1
4q 0n×1

01×n qn+1 1

2qT −1
2qn+2 − 15

8 q2
n+1 −3

2qn+1


 ,

which gives us a set of(n + 2) component cofactor hydrodynamic systems. Let us look at
the three-component case ofn = 1, then

L =




α −1
4q1 0

0 q2 1

2q1 −1
2q3 − 15

8 q2
2 −3

2q2


 ,

and cof(λI − L) = Iλ2 + A2λ + A3, where

A2 =




1
2q2 −1

4q1 0

0 3
2q2 − α 1

2q2 −15
8 q2

2 − 1
2q3 −q2 − α


 ,

A3 =




3
8q

2
2 + 1

2q3 −3
8q1q2 −1

4q1

2q2 −3
2αq2 −α

−2q2
2

15
8 αq2

2 − 1
2q1q2 + 1

2αq3 αq2


 ,

and the related cofactor hydrodynamic systems are

qt2 = A2qx, qt3 = A3qx, qt3 = A3A
−1
2 qt2. (5.10)

The system(5.10)takes a WNSH form(3.29)–(3.31)after the following coordinate trans-
formation:

q1 = (5/2)α3 − 5α2ρ1(λ) + (3/2)αρ2
1(λ) − αρ2(λ) − ρ3(λ)

2α − 2ρ1(λ)
,

q2 = 2α − 2ρ1(λ), q3 = −α2 + 2αρ1(λ) − 3ρ1
1(λ) − 2ρ2(λ).

6. Concluding remarks

In this paper, developing the ideas of Ferapontov and Fordy[7] and Ibort et al.[15],
we have established the relation between the bi-Hamiltonian family of Stäckel systems
and the class of hydrodynamic systems whose complete integral is constructed from a
complete solution of the related Stäckel family. Moreover, we have found the most general
admissible Riemann invariant form of such hydrodynamic systems in separated coordinates.
In a particular case of one-Casimir Stäckel family (cofactor Stäckel systems), we also
presented some systematic methods of construction of related hydrodynamic systems in
arbitrary coordinates and the explicit form of the transformation to the Riemann invariant
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form. The second of the presented methods reveals a new interesting link between soliton
systems and the class of hydrodynamic systems considered. Actually, the link is as follows:

soliton system→ Sẗackel system→ hydrodynamic system

and the complete solution to the Stäckel system is a simultaneous particular solution of both
soliton and hydrodynamic system.
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